A ma leginkább elfogadott elmélet szerint a világegyetem anyaga a kb. 15 milliárd éve lezajlott ún. ősrobbanás során jött létre. Az óriási hidrogén- és héliumfelhőkből galaxisok, azokon belül csillagok, csillaghalmazok alakultak ki. A Naprendszer a Tejútrendszernek nevezett galaxis egyik spirálkarjában foglal helyet. A Tejútrendszer egy kb. 100 000 fényév átmérőjű, mintegy 100 milliárd csillagot magába foglaló spirálgalaxis. (1. ábra)
1. ábra. A Naprendszer helye a Tejútrendszerben (NASA/nasaimages.org alapján)
A Nap és a körülötte keringő égitestek egy porból és gázokból álló felhő összehúzódásával kezdődött. Az összehúzódást valószínűleg egy közeli csillag felrobbanása indította el. A szupernóvából származó magasabb rendszámú elemek „beszennyezték” a gázfelhőt, ennek köszönhetjük, hogy megtalálható lett a Naprendszerben pl. a testünket felépítő szén, a kőzetekben gyakori szilícium, az eszközeink anyagát adó vas, vagy az atomerőműveket fűtő urán. Ez a folyamat kb. 4,7 milliárd évvel ezelőtt kezdődött. Ebben a forgó, korong alakú felhőben lezajló folyamatok határozták meg a Naprendszer égitesteinek tulajdonságait, így a mozgásukat, az anyagi összetételüket és az ettől függő felszíni alakzataikat is. Az ún. Lewis-féle modell szerint a kondenzációs folyamatokat és az anyagi összetételt nagyban befolyásolta a Naptól való távolság (1. táblázat).
1.1. táblázat - 1. táblázat. Hőmérséklet, kondenzálódás és bolygókialakulás a szoláris ködben (Lewis, S. J. 1974 alapján)
Hőmérséklet (K) |
Kondenzátum |
Bolygótestek és becsült kialakulási hőmérsékletük (K) |
1500 |
fémoxidok | |
1300 |
fémvas, nikkel |
Merkúr (1400) |
1200 |
ensztatit | |
1000 |
alkáliföldpátok |
Vénusz (900) |
680 |
troilit | |
550 |
tremolit |
Föld (600) |
425 |
szerpentin |
Mars (450) |
175 |
vízjég |
Jupiter-típusú bolygók (175) |
150 |
ammónia-vízjég | |
120 |
metán-vízjég | |
65 |
argon-neonjég |
Pluto (65) |
Az ősnapban meginduló magfúziós folyamat jelentősen felfűtötte a felhő központi részét. A szoláris köd belső vidékeiről a gázok, illetve a porszemcsékből felszabaduló illékony anyagok a Napból áramló részecskesugárzás, a napszél segítségével a külső területekre kerültek. A Naphoz közelebbi területek tehát illó anyagokban nagyon elszegényedtek. A belső területeken tehát a bolygókezdemények, bolygócsírák, vagy más néven planetezimálok összeállásában csak szilárd szemcsék vettek részt. Ezért állnak főképpen szilikátokból, és ezért tartalmaznak kevés illó anyagot a Föld-típusú bolygók, a Hold, valamint a kisbolygók. Abban a távolságban, ahol már elég hideg volt a víz kicsapódásához, a vízjég-szemcsék száma ugrásszerűen megnőtt. Az ennél távolabbi tartományban így már a világegyetem leggyakoribb molekulája, a H2O is részt vett a bolygókezdemények felépítésében. Ehhez a határhoz közel tudott kialakulni a legnagyobb bolygó, a Jupiter. Ettől kifelé a szemcsesűrűség és a belőlük felépülő planetezimál-méret ismét folyamatosan csökkent. (Illés E. 2003) A szoláris ködből jelentős mennyiségű gázt csak az óriásbolygók tudtak magukhoz kötni, de azok is csak az összeállás későbbi fázisában, amikor már kellően nagy méretű és gravitációjú maggal rendelkeztek. A Jupiter-típusú bolygók nagy kiterjedésű gáz légköre azért tudott megmaradni, mert a Naptól távol alacsonyabb a hőmérséklet (kisebb a gázok hőmozgása, nem szöknek el), illetve a napszél ereje is gyengébb. (Bérczi Sz. 1991, 2003)
Fontos megemlíteni, hogy a bolygócsírák további növekedésében már nem a por- és gázgyűjtés jelentette a fő szerepet, hanem az egymással való összeütközés és összeolvadás. A ma leginkább elfogadott elmélet szerint a Holdunk is egy ilyen, Mars méretű planetezimál és a Föld összeütközésekor kidobott anyagfelhőből állt össze.